Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (180)2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-35188113

RESUMO

The blood-brain barrier (BBB) is a key challenge for the successful delivery of drugs to the brain. Ultrasound exposure in the presence of microbubbles has emerged as an effective method to transiently and locally increase the permeability of the BBB, facilitating para- and transcellular transport of drugs across the BBB. Imaging the vasculature during ultrasound-microbubble treatment will provide valuable and novel insights on the mechanisms and dynamics of ultrasound-microbubble treatments in the brain. Here, we present an experimental procedure for intravital multiphoton microscopy using a cranial window aligned with a ring transducer and a 20x objective lens. This set-up enables high spatial and temporal resolution imaging of the brain during ultrasound-microbubble treatments. Optical access to the brain is obtained via an open-skull cranial window. Briefly, a 3-4 mm diameter piece of the skull is removed, and the exposed area of the brain is sealed with a glass coverslip. A 0.82 MHz ring transducer, which is attached to a second glass coverslip, is mounted on top. Agarose (1% w/v) is used between the coverslip of the transducer and the coverslip covering the cranial window to prevent air bubbles, which impede ultrasound propagation. When sterile surgery procedures and anti-inflammatory measures are taken, ultrasound-microbubble treatments and imaging sessions can be performed repeatedly over several weeks. Fluorescent dextran conjugates are injected intravenously to visualize the vasculature and quantify ultrasound-microbubble induced effects (e.g., leakage kinetics, vascular changes). This paper describes the cranial window placement, ring transducer placement, imaging procedure, common troubleshooting steps, as well as advantages and limitations of the method.


Assuntos
Barreira Hematoencefálica , Microbolhas , Transporte Biológico , Barreira Hematoencefálica/diagnóstico por imagem , Sistemas de Liberação de Medicamentos , Microscopia , Permeabilidade
2.
Front Bioeng Biotechnol ; 9: 739225, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513817

RESUMO

Cell coculture strategies can promote angiogenesis within tissue engineering constructs. This study aimed to test the angiogenic potential of human umbilical vein endothelial cells (HUVEC) cocultured with gingiva-derived progenitor cells (GPC) as spheroids in a xeno-free environment. Human platelet lysate (HPL) was used as a cell culture supplement and as a hydrogel matrix (HPLG) for spheroid encapsulation. HUVEC and HUVEC + GPC (1:1 or 5:1) spheroids were encapsulated in various HPLG formulations. Angiogenesis was assessed via in vitro sprouting and in vivo chick chorioallantoic membrane (CAM) assays. HUVEC revealed characteristic in vitro sprouting in HPL/HPLG and this was significantly enhanced in cocultures with GPC (p < 0.05). A trend for greater sprouting was observed in 5:1 vs 1:1 HUVEC + GPC spheroids and in certain HPLG formulations (p > 0.05). Both HUVEC and HUVEC + GPC spheroids in HPLG revealed abundant and comparable neoangiogenesis in the CAM assay (p > 0.05). Spheroid coculture of HUVEC + GPC in HPLG represents a promising strategy to promote angiogenesis.

4.
J Control Release ; 337: 285-295, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274386

RESUMO

The restrictive nature of the blood-brain barrier (BBB) prevents efficient treatment of many brain diseases. Focused ultrasound in combination with microbubbles has shown to safely and transiently increase BBB permeability. Here, the potential of Acoustic Cluster Therapy (ACT®), a microbubble platform specifically engineered for theranostic purposes, to increase the permeability of the BBB and improve accumulation of IRDye® 800CW-PEG and core-crosslinked polymeric micelles (CCPM) in the murine brain, was studied. Contrast enhanced magnetic resonance imaging (MRI) showed increased BBB permeability in all animals after ACT®. Near infrared fluorescence (NIRF) images of excised brains 1 h post ACT® revealed an increased accumulation of the IRDye® 800CW-PEG (5.2-fold) and CCPM (3.7-fold) in ACT®-treated brains compared to control brains, which was retained up to 24 h post ACT®. Confocal laser scanning microscopy (CLSM) showed improved extravasation and penetration of CCPM into the brain parenchyma after ACT®. Histological examination of brain sections showed no treatment related tissue damage. This study demonstrated that ACT® increases the permeability of the BBB and enhances accumulation of macromolecules and clinically relevant nanoparticles to the brain, taking a principal step in enabling improved treatment of various brain diseases.


Assuntos
Encéfalo , Micelas , Acústica , Animais , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Camundongos , Microbolhas
5.
J Vis Exp ; (172)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34180885

RESUMO

Microbubble contrast agents hold great promise for drug delivery applications with ultrasound. Encapsulating drugs in nanoparticles reduces systemic toxicity and increases circulation time of the drugs. In a novel approach to microbubble-assisted drug delivery, nanoparticles are incorporated in or on microbubble shells, enabling local and triggered release of the nanoparticle payload with ultrasound. A thorough understanding of the release mechanisms within the vast ultrasound parameter space is crucial for efficient and controlled release. This set of presented protocols is applicable to microbubbles with a shell containing a fluorescent label. Here, the focus is on microbubbles loaded with poly(2-ethyl-butyl cyanoacrylate) polymeric nanoparticles, doped with a modified Nile Red dye. The particles are fixed within a denatured casein shell. The microbubbles are produced by vigorous stirring, forming a dispersion of perfluoropropane gas in the liquid phase containing casein and nanoparticles, after which the microbubble shell self-assembles. A variety of microscopy techniques are needed to characterize the nanoparticle-stabilized microbubbles at all relevant timescales of the nanoparticle release process. Fluorescence of the nanoparticles enables confocal imaging of single microbubbles, revealing the particle distribution within the shell. In vitro ultra-high-speed imaging using bright-field microscopy at 10 million frames per second provides insight into the bubble dynamics in response to ultrasound insonation. Finally, nanoparticle release from the bubble shell is best visualized by means of fluorescence microscopy, performed at 500,000 frames per second. To characterize drug delivery in vivo, the triggered release of nanoparticles within the vasculature and their extravasation beyond the endothelial layer is studied using intravital microscopy in tumors implanted in dorsal skinfold window chambers, over a timescale of several minutes. The combination of these complementary characterization techniques provides unique insight into the behavior of microbubbles and their payload release at a range of time and length scales, both in vitro and in vivo.


Assuntos
Microbolhas , Nanopartículas , Meios de Contraste , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Microscopia
6.
Pharmaceutics ; 13(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946327

RESUMO

Therapeutic agents can benefit from encapsulation in nanoparticles, due to improved pharmacokinetics and biodistribution, protection from degradation, increased cellular uptake and sustained release. Microbubbles in combination with ultrasound have been shown to improve the delivery of nanoparticles and drugs to tumors and across the blood-brain barrier. Here, we evaluate two different microbubbles for enhancing the delivery of polymeric nanoparticles to cells in vitro: a commercially available lipid microbubble (Sonazoid) and a microbubble with a shell composed of protein and nanoparticles. Various ultrasound parameters are applied and confocal microscopy is employed to image cellular uptake. Ultrasound enhanced cellular uptake depending on the pressure and duty cycle. The responsible mechanisms are probably sonoporation and sonoprinting, followed by uptake, and to a smaller degree enhanced endocytosis. The use of commercial Sonazoid microbubbles leads to significantly lower uptake than when using nanoparticle-loaded microbubbles, suggesting that proximity between cells, nanoparticles and microbubbles is important, and that mainly nanoparticles in the shell are taken up, rather than free nanoparticles in solution.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32746200

RESUMO

Penetration of nanoscale therapeutic agents into the extracellular matrix (ECM) of a tumor is a limiting factor for the sufficient delivery of drugs in tumors. Ultrasound (US) in combination with microbubbles causing cavitation is reported to improve delivery of nanoparticles (NPs) and drugs to tumors. Acoustic radiation force (ARF) could also enhance the penetration of NPs in tumor ECM. In this work, a collagen gel was used as a model for tumor ECM to study the effects of ARF on the penetration of NPs as well as the deformation of collagen gels applying different US parameters (varying pressure and duty cycle). The collagen gel was characterized, and the diffusion of water and NPs was measured. The penetration of NPs into the gel was measured by confocal laser scanning microscopy and numerical simulations were performed to determine the ARF and to estimate the penetration distance and extent of deformation. ARF had no effect on the penetration of NPs into the collagen gels for the US parameters and gel used, whereas a substantial deformation was observed. The width of the deformation on the collagen gel surface corresponded to the US beam. Comparing ARF caused by attenuation within the gel and Langevin pressure caused by reflection at the gel-water surface, ARF was the prevalent mechanism for the gel deformation. The experimental and theoretical results were consistent both with respect to the NP penetration and the gel deformation.


Assuntos
Nanopartículas , Acústica , Colágeno , Géis , Microbolhas
8.
Artigo em Inglês | MEDLINE | ID: mdl-32986550

RESUMO

Acoustic radiation force (ARF) might improve the distribution of nanoparticles (NPs) in tumors. To study this, tumors growing subcutaneously in mice were exposed to focused ultrasound (FUS) either 15 min or 4 h after the injection of NPs, to investigate the effect of ARF on the transport of NPs across the vessel wall and through the extracellular matrix. Quantitative analysis of confocal microscopy images from frozen tumor sections was performed to estimate the displacement of NPs from blood vessels. Using the same experimental exposure parameters, ARF was simulated and compared with the experimental data. Enhanced interstitial transport of NPs in tumor tissues was observed when FUS (10 MHz, acoustic power 234 W/cm2, 3.3% duty cycle) was given either 15 min or 4 h after NP administration. According to acoustic simulations, the FUS generated an ARF per unit volume of 2.0×106 N/m3. The displacement of NPs was larger when FUS was applied 4 h after NP injection compared with after 15 min. This study shows that ARF might contribute to a modest improved distribution of NPs into the tumor interstitium.


Assuntos
Nanopartículas , Neoplasias , Acústica , Animais , Camundongos , Neoplasias/diagnóstico por imagem
9.
Prostate ; 80(2): 186-197, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31763715

RESUMO

BACKGROUND: The transgenic adenocarcinoma of the mouse prostate (TRAMP) is a widely used genetically engineered spontaneous prostate cancer model. However, both the degree of malignancy and time of cancer onset vary. While most mice display slowly progressing cancer, a subgroup develops fast-growing poorly differentiated (PD) tumors, making the model challenging to use. We investigated the feasibility of using ultrasound (US) imaging to screen for PD tumors and compared the performances of US and magnetic resonance imaging (MRI) in providing reliable measurements of disease burden. METHODS: TRAMP mice (n = 74) were screened for PD tumors with US imaging and findings verified with MRI, or in two cases with gross pathology. PD tumor volume was estimated with US and MR imaging and the methods compared (n = 11). For non-PD mice, prostate volume was used as a marker for disease burden and estimated with US imaging, MRI, and histology (n = 11). The agreement between the measurements obtained by the various methods and the intraobserver variability (IOV) was assessed using Bland-Altman analysis. RESULTS: US screening showed 81% sensitivity, 91% specificity, 72% positive predictive value, and 91% negative predictive value. The smallest tumor detected by US screening was 14 mm3 and had a maximum diameter of 2.6 mm. MRI had the lowest IOV for both PD tumor and prostate volume estimation. US IOV was almost as low as MRI for PD tumor volumes but was considerably higher for prostate volumes. CONCLUSIONS: US imaging was found to be a good screening method for detecting PD tumors and estimating tumor volume in the TRAMP model. MRI had better repeatability than US, especially when estimating prostate volumes.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/terapia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Adenocarcinoma/genética , Animais , Monitoramento Biológico/métodos , Modelos Animais de Doenças , Detecção Precoce de Câncer/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Neoplasias da Próstata/genética , Reprodutibilidade dos Testes , Ultrassonografia/métodos
10.
Expert Opin Drug Deliv ; 15(12): 1249-1261, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30415585

RESUMO

INTRODUCTION: Ultrasound in combination with microbubbles can make cells and tissues more accessible for drugs, thereby achieving improved therapeutic outcomes. In this review, we introduce the term 'sonopermeation', covering mechanisms such as pore formation (traditional sonoporation), as well as the opening of intercellular junctions, stimulated endocytosis/transcytosis, improved blood vessel perfusion and changes in the (tumor) microenvironment. Sonopermeation has gained a lot of interest in recent years, especially for delivering drugs through the otherwise impermeable blood-brain barrier, but also to tumors. AREAS COVERED: In this review, we summarize various in vitro assays and in vivo setups that have been employed to unravel the fundamental mechanisms involved in ultrasound-enhanced drug delivery, as well as clinical trials that are ongoing in patients with brain, pancreatic, liver and breast cancer. We summarize the basic principles of sonopermeation, describe recent findings obtained in (pre-) clinical trials, and discuss future directions. EXPERT OPINION: We suggest that an improved mechanistic understanding, and microbubbles and ultrasound equipment specialized for drug delivery (and not for imaging) are key aspects to create more effective treatment regimens by sonopermeation. Real-time feedback and tools to predict therapeutic outcome and which tumors/patients will benefit from sonopermeation-based interventions will be important to promote clinical translation.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Neoplasias/tratamento farmacológico , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Endocitose , Humanos , Microambiente Tumoral , Ultrassonografia
11.
J Control Release ; 279: 292-305, 2018 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-29684498

RESUMO

Preclinical research has demonstrated that nanoparticles and macromolecules can accumulate in solid tumors due to the enhanced permeability and retention effect. However, drug loaded nanoparticles often fail to show increased efficacy in clinical trials. A better understanding of how tumor heterogeneity affects nanoparticle accumulation could help elucidate this discrepancy and help in patient selection for nanomedicine therapy. Here we studied five human tumor models with varying morphology and evaluated the accumulation of 100 nm polystyrene nanoparticles. Each tumor model was characterized in vivo using micro-computed tomography, contrast-enhanced ultrasound and diffusion-weighted and dynamic contrast-enhanced magnetic resonance imaging. Ex vivo, the tumors were sectioned for both fluorescence microscopy and histology. Nanoparticle uptake and distribution in the tumors were generally heterogeneous. Density of functional blood vessels measured by fluorescence microscopy correlated significantly (p = 0.0056) with nanoparticle accumulation and interestingly, inflow of microbubbles measured with ultrasound also showed a moderate but significant (p = 0.041) correlation with nanoparticle accumulation indicating that both amount of vessels and vessel morphology and perfusion predict nanoparticle accumulation. This indicates that blood vessel characterization using contrast-enhanced ultrasound imaging or other methods could be valuable for patient stratification for treatment with nanomedicines.


Assuntos
Nanopartículas/administração & dosagem , Neoplasias/metabolismo , Poliestirenos/química , Ultrassonografia/métodos , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Feminino , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microbolhas , Microscopia de Fluorescência , Nanopartículas/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/diagnóstico por imagem , Microtomografia por Raio-X , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cytometry A ; 91(8): 760-766, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27077940

RESUMO

In vitro and in vivo behavior of nanoparticles (NPs) is often studied by tracing the NPs with fluorescent dyes. This requires stable incorporation of dyes within the NPs, as dye leakage may give a wrong interpretation of NP biodistribution, cellular uptake, and intracellular distribution. Furthermore, NP labeling with trace amounts of dye should not alter NP properties such as interactions with cells or tissues. To allow for versatile NP studies with a variety of fluorescence-based assays, labeling of NPs with different dyes is desirable. Hence, when new dyes are introduced, simple and fast screening methods to assess labeling stability and NP-cell interactions are needed. For this purpose, we have used a previously described generic flow cytometry assay; incubation of cells with NPs at 4 and 37°C. Cell-NP interaction is confirmed by cellular fluorescence after 37°C incubation, and NP-dye retention is confirmed when no cellular fluorescence is detected at 4°C. Three different NP-platforms labeled with six different dyes were screened, and a great variability in dye retention was observed. Surprisingly, incorporation of trace amounts of certain dyes was found to reduce or even inhibit NP uptake. This work highlights the importance of thoroughly evaluating every dye-NP combination before pursuing NP-based applications. © 2016 International Society for Advancement of Cytometry.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Fluorescência , Humanos , Ratos , Coloração e Rotulagem/métodos , Distribuição Tecidual/fisiologia
13.
Colloids Surf B Biointerfaces ; 150: 373-383, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27842930

RESUMO

The interaction of the promising drug carriers poly(alkyl cyanoacrylate) nanoparticles (PACA NPs) with lipid monolayers modeling the cell membrane and with RBE4 immortalized rat brain endothelial cells was compared to assess the relevance of lipid monolayer-based cell membrane models for PACA NP cellular uptake. NP properties such as size and charge of NPs and density of poly(ethylene glycol) coating (PEG) were kept in a narrow range to assess whether the type of PEG coating and the PACA monomer affected NP-monolayer and NP-cell interactions. The interaction with lipid monolayers was evaluated using surface pressure measurements and Brewster angle microscopy. NP association with and uptake by cells were assessed using flow cytometry and confocal laser scanning microscopy. The interaction between NPs and both lipid monolayers and the plasma membrane depended on the type of PEG. PEG density affected cellular uptake but not interaction with lipid monolayers. NP monomer, NPs size and charge had no effect on the interaction. This might be due to the fact that the size and charge distribution was kept rather narrow to study the effect of PACA monomer and PEG type. In conclusion, while modeling solely the passive aspect of NP-cell interactions, lipid monolayers nevertheless proved a valuable cell membrane model whose interaction with PACA NPs correlated well with NP-cell interaction. In addition, both NP-monolayer and NP-cell interactions were dependent on PEGylation type, which could be used in the design of NPs to either facilitate or hinder cellular uptake, depending on the intended purpose.


Assuntos
Cianoacrilatos/química , Lipídeos/química , Nanopartículas/química , Polietilenoglicóis/química , Animais , Encéfalo/metabolismo , Membrana Celular/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Células Endoteliais/metabolismo , Citometria de Fluxo , Microscopia Confocal , Tamanho da Partícula , Fosfolipídeos/química , Polímeros/farmacologia , Ratos , Propriedades de Superfície
14.
PLoS One ; 11(8): e0160705, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547955

RESUMO

Drug delivery into the brain is impeded by the blood-brain-barrier (BBB) that filters out the vast majority of drugs after systemic administration. In this work, we assessed the transport, uptake and cytotoxicity of promising drug nanocarriers, mesoporous silica nanoparticles (MSNs), in in vitro models of the BBB. RBE4 rat brain endothelial cells and Madin-Darby canine kidney epithelial cells, strain II, were used as BBB models. We studied spherical and rod-shaped MSNs with the following modifications: bare MSNs and MSNs coated with a poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) block copolymer. In transport studies, MSNs showed low permeability, whereas the results of the cellular uptake studies suggest robust uptake of PEG-PEI-coated MSNs. None of the MSNs showed significant toxic effects in the cell viability studies. While the shape effect was detectable but small, especially in the real-time surface plasmon resonance measurements, coating with PEG-PEI copolymers clearly facilitated the uptake of MSNs. Finally, we evaluated the in vivo detectability of one of the best candidates, i.e. the copolymer-coated rod-shaped MSNs, by two-photon in vivo imaging in the brain vasculature. The particles were clearly detectable after intravenous injection and caused no damage to the BBB. Thus, when properly designed, the uptake of MSNs could potentially be utilized for the delivery of drugs into the brain via transcellular transport.


Assuntos
Barreira Hematoencefálica/metabolismo , Portadores de Fármacos , Células Endoteliais/efeitos dos fármacos , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoimina/análogos & derivados , Dióxido de Silício/química , Animais , Transporte Biológico , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cães , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Injeções Intravenosas , Células Madin Darby de Rim Canino , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Biológicos , Imagem Molecular , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Tamanho da Partícula , Permeabilidade , Polietilenoimina/química , Ratos , Ressonância de Plasmônio de Superfície
15.
J Control Release ; 236: 15-21, 2016 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-27297780

RESUMO

Acoustic cluster therapy (ACT) is a novel approach for ultrasound mediated, targeted drug delivery. In the current study, we have investigated ACT in combination with paclitaxel and Abraxane® for treatment of a subcutaneous human prostate adenocarcinoma (PC3) in mice. In combination with paclitaxel (12mg/kg given i.p.), ACT induced a strong increase in therapeutic efficacy; 120days after study start, 42% of the animals were in stable, complete remission vs. 0% for the paclitaxel only group and the median survival was increased by 86%. In combination with Abraxane® (12mg paclitaxel/kg given i.v.), ACT induced a strong increase in the therapeutic efficacy; 60days after study start 100% of the animals were in stable, remission vs. 0% for the Abraxane® only group, 120days after study start 67% of the animals were in stable, complete remission vs. 0% for the Abraxane® only group. For the ACT+Abraxane group 100% of the animals were alive after 120days vs. 0% for the Abraxane® only group. Proof of concept for Acoustic Cluster Therapy has been demonstrated; ACT markedly increases the therapeutic efficacy of both paclitaxel and Abraxane® for treatment of human prostate adenocarcinoma in mice.


Assuntos
Paclitaxel Ligado a Albumina/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Paclitaxel/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Ondas Ultrassônicas , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Masculino , Camundongos
16.
Nat Commun ; 7: 11221, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27071376

RESUMO

A major goal of cancer nanotherapy is to use nanoparticles as carriers for targeted delivery of anti-tumour agents. The drug-carrier association after intravenous administration is essential for efficient drug delivery to the tumour. However, a large number of currently available nanocarriers are self-assembled nanoparticles whose drug-loading stability is critically affected by the in vivo environment. Here we used in vivo FRET imaging to systematically investigate how drug-carrier compatibility affects drug release in a tumour mouse model. We found the drug's hydrophobicity and miscibility with the nanoparticles are two independent key parameters that determine its accumulation in the tumour. Next, we applied these findings to improve chemotherapeutic delivery by augmenting the parent drug's compatibility; as a result, we achieved better antitumour efficacy. Our results help elucidate nanomedicines' in vivo fate and provide guidelines for efficient drug delivery.


Assuntos
Portadores de Fármacos/química , Nanomedicina , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Simulação por Computador , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Espectroscopia de Luz Próxima ao Infravermelho , Resultado do Tratamento
17.
J Control Release ; 224: 158-164, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26774223

RESUMO

Proof of principle for local drug delivery with Acoustic Cluster Therapy (ACT) was demonstrated in a human prostate adenocarcinoma growing in athymic mice, using near infrared (NIR) dyes as model molecules. A dispersion of negatively charged microbubble/positively charged microdroplet clusters are injected i.v., activated within the target pathology by diagnostic ultrasound (US), undergo an ensuing liquid-to-gas phase shift and transiently deposit 20-30µm large bubbles in the microvasculature, occluding blood flow for ~5-10min. Further application of low frequency US induces biomechanical effects that increase the vascular permeability, leading to a locally enhanced extravasation of components from the vascular compartment (e.g., released or co-administered drugs). Results demonstrated deposition of activated bubbles in tumor vasculature. Following ACT treatment, a significant and tumor specific increase in the uptake of a co-administered macromolecular NIR dye was shown. In addition, ACT compound loaded with a lipophilic NIR dye to the microdroplet component was shown to facilitate local release and tumor specific uptake. Whereas the mechanisms behind the observed increased and tumor specific uptake are not fully elucidated, it is demonstrated that the ACT concept can be applied as a versatile technique for targeted drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Ultrassom/métodos , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/tratamento farmacológico , Animais , Permeabilidade Capilar/efeitos da radiação , Linhagem Celular Tumoral , Meios de Contraste , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microbolhas , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Espectroscopia de Luz Próxima ao Infravermelho
18.
J Control Release ; 220(Pt A): 287-294, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26518721

RESUMO

The blood-brain barrier (BBB) constitutes a significant obstacle for the delivery of drugs into the central nervous system (CNS). Nanoparticles have been able to partly overcome this obstacle and can thus improve drug delivery across the BBB. Furthermore, focused ultrasound in combination with gas filled microbubbles has opened the BBB in a temporospatial manner in animal models, thus facilitating drug delivery across the BBB. In the current study we combine these two approaches in our quest to develop a novel, generic method for drug delivery across the BBB and into the CNS. Nanoparticles were synthesized using the polymer poly(butyl cyanoacrylate) (PBCA), and such nanoparticles have been reported to cross the BBB to some extent. Together with proteins, these nanoparticles self-assemble into microbubbles. Using these novel microbubbles in combination with focused ultrasound, we successfully and safely opened the BBB transiently in healthy rats. Furthermore, we also demonstrated that the nanoparticles could cross the BBB and deliver a model drug into the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Portadores de Fármacos , Embucrilato/química , Corantes Fluorescentes/metabolismo , Microbolhas , Nanopartículas , Oxazinas/metabolismo , Ultrassom/métodos , Animais , Composição de Medicamentos , Feminino , Corantes Fluorescentes/química , Imageamento por Ressonância Magnética , Nanotecnologia , Oxazinas/química , Ratos Sprague-Dawley
19.
Anal Bioanal Chem ; 407(26): 8067-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26319282

RESUMO

Biomolecular changes in the cartilage matrix during the early stage of osteoarthritis may be detected by Raman spectroscopy. The objective of this investigation was to determine vibrational spectral differences among different grades (grades I, II, and III) of osteoarthritis in human osteoarthritic cartilage, which was classified according to the International Cartilage Repair Society (ICRS) grading system. Degenerative articular cartilage samples were collected during total joint replacement surgery and were classified according to the ICRS grading system for osteoarthritis. Twelve cartilage sections (4 sections of each ICRS grades I, II, and III) were selected for Raman spectroscopic analysis. Safranin-O/Fast green was used for histological staining and assignment of the Osteoarthritis Research Society International (OARSI) grade. Multivariate principal component analysis (PCA) was used for data analysis. Spectral analysis indicates that the content of disordered coil collagen increases significantly during the early progression of osteoarthritis. However, the increase was not statistically significant during later stages of the disease. A decrease in the content of proteoglycan was observed only during advanced stages of osteoarthritis. Our investigation shows that Raman spectroscopy can classify the different stage of osteoarthritic cartilage and can provide details on biochemical changes. This proof-of-concept study encourages further investigation of fresh cartilage on a larger population using fiber-based miniaturized Raman probe for the development of in vivo Raman arthroscopy as a potential diagnostic tool for osteoarthritis.


Assuntos
Cartilagem/patologia , Microscopia Confocal/métodos , Osteoartrite/diagnóstico , Análise Espectral Raman/métodos , Amidas/análise , Humanos , Osteoartrite/patologia , Projetos Piloto , Análise de Componente Principal , Proteoglicanas/análise
20.
Contrast Media Mol Imaging ; 10(5): 356-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25930237

RESUMO

Microbubbles (MBs) are routinely used as contrast agents for ultrasound imaging. The use of ultrasound in combination with MBs has also attracted attention as a method to enhance drug delivery. We have developed a technology platform incorporating multiple functionalities, including imaging and therapy in a single system consisting of MBs stabilized by polyethylene glycol (PEG)-coated polymeric nanoparticles (NPs). The NPs, containing lipophilic drugs and/or contrast agents, are composed of the widely used poly(butyl cyanoacrylate) (PBCA) polymer and prepared in a single step. MBs stabilized by these NPs are subsequently prepared by self-assembly of NPs at the MB air-liquid interface. Here we show that these MBs can act as contrast agents for conventional ultrasound imaging. Successful encapsulation of iron oxide NPs inside the PBCA NPs is demonstrated, potentially enabling the NP-MBs to be used as magnetic resonance imaging (MRI) and/or molecular ultrasound imaging contrast agents. By precise tuning of the applied ultrasound pulse, the MBs burst and the NPs constituting the shell are released. This could result in increased local deposit of NPs into target tissue, providing improved therapy and imaging contrast compared with freely distributed NPs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Embucrilato/química , Microbolhas , Imagem Multimodal/métodos , Nanopartículas/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...